6 research outputs found

    Underwater & out of sight: towards ubiquity in underwater robotics

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2019.The Earth's oceans holds a wealth of information currently hidden from us. Effective measurement of its properties could provide a better understanding of our changing climate and insights into the creatures that inhabit its waters. Autonomous underwater vehicles (AUVs) hold the promise of penetrating the ocean environment and uncovering its mysteries; and progress in underwater robotics research over the past three decades has resulted in vehicles that can navigate reliably and operate consistently, providing oceanographers with an additional tool for studying the ocean. Unfortunately, the high cost of these vehicles has stifled the democratization of this technology. We believe that this is a consequence of two factors. Firstly, reliable navigation on conventional AUVs has been achieved through the use of a sophisticated sensor system, namely the Doppler velocity log (DVL)-aided inertial navigation system (INS), which drives up vehicle cost, power use and size. Secondly, deployment of these vehicles is expensive and unwieldy due to their complexity, size and cost, resulting in the need for specialized personnel for vehicle operation and maintenance. The recent development of simpler, low-cost, miniature underwater robots provides a solution that mitigates both these factors; however, removing the expensive DVL-aided INS means that they perform poorly in terms of navigation accuracy. We address this by introducing a novel acoustic system that enables AUV self-localization without requiring a DVL-aided INS or on-board active acoustic transmitters. We term this approach Passive Inverted Ultra-Short Baseline (piUSBL) positioning. The system uses a single acoustic beacon and a time-synchronized, vehicle-mounted, passive receiver array to localize the vehicle relative to this beacon. Our approach has two unique advantages: first, a single beacon lowers cost and enables easy deployment; second, a passive receiver allows the vehicle to be low-power, low-cost and small, and enables multi-vehicle scalability. Providing this new generation of small and inexpensive vehicles with accurate navigation can potentially lower the cost of entry into underwater robotics research and further its widespread use for ocean science. We hope that these contributions in low-cost underwater navigation will enable the ubiquitous and coordinated use of robots to explore and understand the underwater domain.This research was funded and supported by a number of sponsors; we gratefully acknowledge them below. Defense Advanced Research Projects Agency (DARPA) and SSC Pacific via Applied Physical Sciences Corp. (APS) under contract number N66001-11-C-4115. SSC Pacific via Applied Physical Sciences Corp. (APS) under award number N66001-14-C-4031. Air Force via Lincoln Laboratory under award number FA8721-05-C-0002. Office of Naval Research (ONR) via University of California-San Diego under award number N00014-13-1-0632. Defense Advanced Research Projects Agency (DARPA) via Applied Physical Sciences Corp. (APS) under award number HR0011-18-C-0008. Office of Naval Research (ONR) under award number N00014-17-1-2474

    Synchronous-clock range-angle relative acoustic navigation: a unified approach to multi-AUV localization, command, control, and coordination

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rypkema, N., Schmidt, H., & Fischell, E. Synchronous-clock range-angle relative acoustic navigation: a unified approach to multi-AUV localization, command, control, and coordination. Journal of Field Robotics, 2(1), (2022): 774–806, https://doi.org/10.55417/fr.2022026.This paper presents a scalable acoustic navigation approach for the unified command, control, and coordination of multiple autonomous underwater vehicles (AUVs). Existing multi-AUV operations typically achieve coordination manually by programming individual vehicles on the surface via radio communications, which becomes impractical with large vehicle numbers; or they require bi-directional intervehicle acoustic communications to achieve limited coordination when submerged, with limited scalability due to the physical properties of the acoustic channel. Our approach utilizes a single, periodically broadcasting beacon acting as a navigation reference for the group of AUVs, each of which carries a chip-scale atomic clock and fixed ultrashort baseline array of acoustic receivers. One-way travel-time from synchronized clocks and time-delays between signals received by each array element allow any number of vehicles within receive distance to determine range, angle, and thus determine their relative position to the beacon. The operator can command different vehicle behaviors by selecting between broadcast signals from a predetermined set, while coordination between AUVs is achieved without intervehicle communication by defining individual vehicle behaviors within the context of the group. Vehicle behaviors are designed within a beacon-centric moving frame of reference, allowing the operator to control the absolute position of the AUV group by repositioning the navigation beacon to survey the area of interest. Multiple deployments with a fleet of three miniature, low-cost SandShark AUVs performing closed-loop acoustic navigation in real-time provide experimental results validated against a secondary long-baseline positioning system, demonstrating the capabilities and robustness of our approach with real-world data.This work was partially supported by the Office of Naval Research, the Defense Advanced Research Projects Agency, Lincoln Laboratory, and the Reuben F. and Elizabeth B. Richards Endowed Funds at WHOI

    Memory-efficient approximate three-dimensional beamforming

    Get PDF
    Author Posting. © Acoustical Society of America, 2020. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 148(6), (2020): 3467-3480, doi:10.1121/10.0002852.Localization of acoustic sources using a sensor array is typically performed by estimating direction-of-arrival (DOA) via beamforming of the signals recorded by all elements. Software-based conventional beamforming (CBF) forces a trade-off between memory usage and direction resolution, since time delays associated with a set of directions over which the beamformer is steered must be pre-computed and stored, limiting the number of look directions to available platform memory. This paper describes a DOA localization method that is memory-efficient for three-dimensional (3D) beamforming applications. Its key lies in reducing 3D look directions [described by azimuth/inclination angles (ϕ, θ) when considering the array as a whole] to a single variable (a conical angle, ζ) by treating the array as a collection of sensor pairs. This insight reduces the set of look directions from two dimensions to one, enabling computational and memory efficiency improvements and thus allowing direction resolution to be increased. This method is described and compared to CBF, with comparisons provided for accuracy, computational speedup, and memory usage. As this method involves the incoherent summation of sensor pair outputs, gain is limited, restricting its use to localization of strong sources—e.g., for real-time acoustic localization on embedded systems, where computation and/or memory are limited.This work was partially supported by the Office of Naval Research, the Defense Advanced Research Projects Agency, and Lincoln Laboratory.2021-06-0

    Passive Inverted Ultra-Short Baseline (piUSBL) Localization: An Experimental Evaluation of Accuracy

    No full text
    © 2019 IEEE. The underwater environment poses significant challenges for accurate autonomous underwater vehicle (AUV) navigation. Electromagnetic (EM) waves rapidly attenuate due to absorption by water, thereby preventing the use of traditional EM-based positioning methods such as Global Positioning System (GPS) or visible-light cameras. Consequently, underwater positioning is often performed using systems that operate in the hydro-acoustic frequency range (\leq 10 MHz). Recent work has demonstrated the efficacy of a novel acoustic positioning approach for multi-AUV operations called passive inverted ultra-short baseline (piUSBL) localization-with each vehicle equipped with a time-synchronized USBL array, one-way travel-time (OWTT) range and angle between the AUV and a single acoustic beacon enables multi-AUV navigation relative to the beacon. In this work, a piUSBL system using a five-hydrophone pyramidal array implemented on a WAM-V autonomous surface vehicle (ASV) was used to experimentally gather acoustic measurements and to compare the accuracy of piUSBL localization against ground-truth from a differential GPS unit. This paper provides a comprehensive analysis of the positioning accuracy of the system in a real-world environment, both prior to and after Bayesian filtering, using two independent acoustic beacons for validation. We demonstrate that piUSBL provides acoustic range and angle measurements with errors of about \mu\pm\sigma = 0.03\pm 1.49 \mathrm{m} and \mu\pm\sigma = -0.11\pm 3.16{\circ} respectively. These experimental results suggest that piUSBL localization can provide a highly accurate, inexpensive, and low-power navigation solution for the next generation of miniature, low-cost underwater vehicle

    Towards Real-Time Non-Gaussian SLAM for Underdetermined Navigation

    No full text
    © 2020 IEEE. This paper presents a method for processing sparse, non-Gaussian multimodal data in a simultaneous localization and mapping (SLAM) framework using factor graphs. Our approach demonstrates the feasibility of using a sum-product inference strategy to recover functional belief marginals from highly non-Gaussian situations, relaxing the prolific unimodal Gaussian assumption. The method is more focused than conventional multi-hypothesis approaches, but still captures dominant modes via multi-modality. The proposed algorithm exists in a trade space that spans the anticipated uncertainty of measurement data, task-specific performance, sensor quality, and computational cost. This work leverages several major algorithm design constructs, including clique recycling, to put an upper bound on the allowable computational expense - a major challenge in non-parametric methods. To better demonstrate robustness, experimental results show the feasibility of the method on at least two of four major sources of non-Gaussian behavior: i) the first introduces a canonical range-only problem which is always underdetermined although composed exclusively from Gaussian measurements; ii) a real-world AUV dataset, demonstrating how ambiguous acoustic correlator measurements are directly incorporated into a non-Gaussian SLAM solution, while using dead reckon tethering to overcome short term computational requirements

    Implementation of a Hydrodynamic Model-Based Navigation System for a Low-Cost AUV Fleet

    No full text
    © 2018 IEEE. This work implements a hydrodynamic model-based localization and navigation system for low-cost autonomous underwater vehicles (AUVs) that are limited to a micro-electro mechanical system (MEMS) inertial measurement unit (IMU). The hydrodynamic model of this work is uniquely developed to directly determine the linear velocities of the vehicle using the measured vehicle angular rates and propeller speed as inputs. The proposed system was tested in the field using a fleet of low-cost Bluefin SandShark AUVs. Implementation of the model-based localization system and fusing of the solution into the vehicle navigation loop was conducted using backseat computers of the AUV fleet that run mission orientated operating suite -interval programming (MOOS-IvP). With the model-based navigation system, the maximum localization error (i.e., in comparison to a long baseline (LBL) based ground-truth position) was limited to 15 m and 30 m for two 650-second and 1070-second long missions. Extrapolation of the position drift shows that the model-based localization system is able to limit the position uncertainty to less than 100 m by the end of hour-long mission; whereas, the drift in the default IMU-based localization solution was over 1 km per hour. This is a considerable improvement by only using a MEMS IMU that generally costs less than 100. Furthermore, this work is a step towards generalizing and automating the process of hydrodynamic modeling, model parameter estimation and data fusion (i.e., fusing the localization solution with those from other available aiding sensors and feeding to the navigation loop) so that a model-based localization system can be implemented in any AUV that has backseat computing capability. Index Terms—Autonomous underwater vehicles, model-based localization, hydrodynamic models, system identification, underwater navigatio
    corecore